Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Mol Diagn ; 25(9): 692-701, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37356622

RESUMO

Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disorder characterized by the presence of hamartomas in multiple organs. At the molecular level, the disease is caused by pathogenic variants in the TSC1 and TSC2 genes, and only 10% to 25% of clinically diagnosed patients remain negative after multiplex ligation-dependent probe amplification and exon sequencing of both genes. Here, to improve the molecular diagnosis of TSC, we developed an integral approach that includes multiplex ligation-dependent probe amplification and deep-coverage next-generation sequencing of the entire TSC1 and TSC2 genes, along with an adapted bioinformatic pipeline to detect variants at low allele frequencies (>1%). Using this workflow, the molecular cause was identified in 29 of 42 patients with TSC, describing here, for the first time, 12 novel pathogenic variants in TSC genes. These variants included seven splicing variants, five of which were studied at the cDNA level, determining their effect on splicing. In addition, 8 of the 29 pathogenic variants were detected in mosaicism, including four patients with previous negative study results who presented extremely low mosaic variants (allele frequency, <16%). We demonstrate that this integral approach allows the molecular diagnosis of patients with TSC and improves the conventional one by adapting the technology to the detection of low-frequency mosaics.


Assuntos
Mosaicismo , Esclerose Tuberosa , Humanos , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 1 do Complexo Esclerose Tuberosa/genética , Mutação , Esclerose Tuberosa/diagnóstico , Esclerose Tuberosa/genética
2.
Genes (Basel) ; 13(9)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36140824

RESUMO

Genetic testing for SMA diagnosis, newborn screening, and carrier screening has become a significant public health interest worldwide, driven largely by the development of novel and effective molecular therapies for the treatment of spinal muscular atrophy (SMA) and the corresponding updates to testing guidelines. Concurrently, understanding of the underlying genetics of SMA and their correlation with a broad range of phenotypes and risk factors has also advanced, particularly with respect to variants that modulate disease severity or impact residual carrier risks. While testing guidelines are beginning to emphasize the importance of these variants, there are no clear guidelines on how to utilize them in a real-world setting. Given the need for clarity in practice, this review summarizes several clinically relevant variants in the SMN1 and SMN2 genes, including how they inform outcomes for spinal muscular atrophy carrier risk and disease prognosis.


Assuntos
Atrofia Muscular Espinal , Testes Genéticos/métodos , Humanos , Recém-Nascido , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Triagem Neonatal , Fenótipo , Fluxo de Trabalho
3.
Int J Mol Sci ; 23(15)2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35955418

RESUMO

Spinal muscular atrophy (SMA) is a severe neuromuscular disorder caused by biallelic loss or pathogenic variants in the SMN1 gene. Copy number and modifier intragenic variants in SMN2, an almost identical paralog gene of SMN1, are known to influence the amount of complete SMN proteins. Therefore, SMN2 is considered the main phenotypic modifier of SMA, although genotype−phenotype correlation is not absolute. We present eleven unrelated SMA patients with milder phenotypes carrying the c.859G>C-positive modifier variant in SMN2. All were studied by a specific NGS method to allow a deep characterization of the entire SMN region. Analysis of two homozygous cases for the variant allowed us to identify a specific haplotype, Smn2-859C.1, in association with c.859G>C. Two other cases with the c.859G>C variant in their two SMN2 copies showed a second haplotype, Smn2-859C.2, in cis with Smn2-859C.1, assembling a more complex allele. We also identified a previously unreported variant in intron 2a exclusively linked to the Smn2-859C.1 haplotype (c.154-1141G>A), further suggesting that this region has been ancestrally conserved. The deep molecular characterization of SMN2 in our cohort highlights the importance of testing c.859G>C, as well as accurately assessing the SMN2 region in SMA patients to gain insight into the complex genotype−phenotype correlations and improve prognostic outcomes.


Assuntos
Atrofia Muscular Espinal , Estudos de Associação Genética , Homozigoto , Humanos , Íntrons , Atrofia Muscular Espinal/genética , Mutação , Fenótipo , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética
4.
Sci Rep ; 11(1): 19922, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620959

RESUMO

Three new therapies for spinal muscular atrophy (SMA) have been approved by the United States Food and Drug Administration and the European Medicines Agency since 2016. Although these new therapies improve the quality of life of patients who are symptomatic at first treatment, administration before the onset of symptoms is significantly more effective. As a consequence, newborn screening programs have been initiated in several countries. In 2018, we launched a 3-year pilot program to screen newborns for SMA in the Belgian region of Liège. This program was rapidly expanding to all of Southern Belgium, a region of approximately 55,000 births annually. During the pilot program, 136,339 neonates were tested for deletion of exon 7 of SMN1, the most common cause of SMA. Nine SMA cases with homozygous deletion were identified through this screen. Another patient was identified after presenting with symptoms and was shown to be heterozygous for the SMN1 exon 7 deletion and a point mutation on the opposite allele. These ten patients were treated. The pilot program has now successfully transitioned into the official neonatal screening program in Southern Belgium. The lessons learned during implementation of this pilot program are reported.


Assuntos
Atrofia Muscular Espinal/epidemiologia , Triagem Neonatal , Bélgica/epidemiologia , Gerenciamento Clínico , Suscetibilidade a Doenças , Predisposição Genética para Doença , Humanos , Incidência , Recém-Nascido , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/etiologia , Atrofia Muscular Espinal/terapia , Programas Nacionais de Saúde , Avaliação de Resultados em Cuidados de Saúde , Vigilância em Saúde Pública , Encaminhamento e Consulta , Fluxo de Trabalho
5.
Int J Mol Sci ; 22(16)2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34445733

RESUMO

After 26 years of discovery of the determinant survival motor neuron 1 and the modifier survival motor neuron 2 genes (SMN1 and SMN2, respectively), three SMN-dependent specific therapies are already approved by FDA and EMA and, as a consequence, worldwide SMA patients are currently under clinical investigation and treatment. Bi-allelic pathogenic variants (mostly deletions) in SMN1 should be detected in SMA patients to confirm the disease. Determination of SMN2 copy number has been historically employed to correlate with the phenotype, predict disease evolution, stratify patients for clinical trials and to define those eligible for treatment. In view that discordant genotype-phenotype correlations are present in SMA, besides technical issues with detection of SMN2 copy number, we have hypothesized that copy number determination is only the tip of the iceberg and that more deepen studies of variants, sequencing and structures of the SMN2 genes are necessary for a better understanding of the disease as well as to investigate possible influences in treatment responses. Here, we highlight the importance of a comprehensive approach of SMN1 and SMN2 genetics with the perspective to apply for better prediction of SMA in positive neonatal screening cases and early diagnosis to start treatments.


Assuntos
Atrofia Muscular Espinal/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Genótipo , Humanos , Terapia de Alvo Molecular , Atrofia Muscular Espinal/terapia , Proteína 2 de Sobrevivência do Neurônio Motor/genética
6.
Hum Mutat ; 42(6): 787-795, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33739559

RESUMO

Spinal muscular atrophy (SMA) is caused by bi-allelic loss or pathogenic variants in the SMN1 gene. SMN2, the highly homologous copy of SMN1, is considered the major phenotypic modifier of the disease. Determination of SMN2 copy number is essential to establish robust genotype-phenotype correlations and predict disease evolution, to stratify patients for clinical trials, as well as to define those eligible for treatment. Discordant genotype-phenotype correlations are not uncommon in SMA, some of which are due to intragenic SMN2 variants that may influence the amount of complete SMN transcripts and, therefore, of full-length SMN protein. Detection of these variants is crucial to predict SMA phenotypes in the present scenario of therapeutic advances and with the perspective of SMA neonatal screening and early diagnosis to start treatments. Here, we present a novel, affordable, and versatile method for complete sequencing of the SMN2 gene based on long-range polymerase chain reaction and next-generation sequencing. The method was validated by analyzing samples from 53 SMA patients who lack SMN1, allowing to characterize paralogous, rare variants, and single-nucleotide polymorphisms of SMN2 as well as SMN2-SMN1 hybrid genes. The method identifies partial deletions and can be adapted to determine rare pathogenic variants in patients with at least one SMN1 copy.


Assuntos
Análise Mutacional de DNA/métodos , Atrofia Muscular Espinal/genética , Variações do Número de Cópias de DNA , Dosagem de Genes , Estudos de Associação Genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Nucleotídeo Único , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética
7.
J Clin Endocrinol Metab ; 106(1): e152-e170, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33029631

RESUMO

PURPOSE: Thyroid dyshormonogenesis is a heterogeneous group of hereditary diseases produced by a total/partial blockage of the biochemical processes of thyroid-hormone synthesis and secretion. Paired box 8 (PAX8) is essential for thyroid morphogenesis and thyroid hormone synthesis. We aimed to identify PAX8 variants in patients with thyroid dyshormonogenesis and to analyze them with in vitro functional studies. PATIENTS AND METHODS: Nine pediatric patients with a eutopic thyroid gland were analyzed by the Catalan screening program for congenital hypothyroidism. Scintigraphies showed absent, low, or normal uptake. Only one patient had a hypoplastic gland. On reevaluation, perchlorate discharge test was negative or compatible with partial iodine-organization deficit. After evaluation, 8 patients showed permanent mild or severe hypothyroidism. Massive-sequencing techniques were used to detect variants in congenital hypothyroidism-related genes. In vitro functional studies were based on transactivating activity of mutant PAX8 on a TG-gene promoter and analyzed by a dual-luciferase assays. RESULTS: We identified 7 heterozygous PAX8 exonic variants and 1 homozygous PAX8 splicing variant in 9 patients with variable phenotypes of thyroid dyshormonogenesis. Five were novel and 5 variants showed a statistically significant impaired transcriptional activity of TG promoter: 51% to 78% vs the wild type. CONCLUSIONS: Nine patients presented with PAX8 candidate variants. All presented with a eutopic thyroid gland and 7 had deleterious variants. The phenotype of affected patients varies considerably, even within the same family; but, all except the homozygous patient presented with a normal eutopic thyroid gland and thyroid dyshormonogenesis. PAX8 functional studies have shown that 6 PAX8 variants are deleterious. Our studies have proven effective in evaluating these variants.


Assuntos
Hipotireoidismo Congênito/genética , Fator de Transcrição PAX8/genética , Glândula Tireoide/fisiologia , Adolescente , Variação Biológica da População , Criança , Hipotireoidismo Congênito/diagnóstico , Hipotireoidismo Congênito/tratamento farmacológico , Hipotireoidismo Congênito/fisiopatologia , Feminino , Seguimentos , Terapia de Reposição Hormonal , Humanos , Lactente , Recém-Nascido , Masculino , Mutação , Triagem Neonatal , Fenótipo , Testes de Função Tireóidea , Glândula Tireoide/diagnóstico por imagem , Glândula Tireoide/patologia , Tiroxina/uso terapêutico
8.
Neurol Genet ; 6(6): e530, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33324756

RESUMO

OBJECTIVE: Assessment of SMN2 copy number in patients with spinal muscular atrophy (SMA) is essential to establish careful genotype-phenotype correlations and predict disease evolution. This issue is becoming crucial in the present scenario of therapeutic advances with the perspective of SMA neonatal screening and early diagnosis to initiate treatment, as this value is critical to stratify patients for clinical trials and to define those eligible to receive medication. Several technical pitfalls and interindividual variations may account for reported discrepancies in the estimation of SMN2 copy number and establishment of phenotype-genotype correlations. METHODS: We propose a management guide based on a sequence of specified actions once SMN2 copy number is determined for a given patient. Regardless of the method used to estimate the number of SMN2 copies, our approach focuses on the manifestations of the patient to recommend how to proceed in each case. RESULTS: We defined situations according to SMN2 copy number in a presymptomatic scenario of screening, in which we predict the possible evolution, and when a symptomatic patient is genetically confirmed. Unexpected discordant cases include patients having a single SMN2 copy but noncongenital disease forms, 2 SMN2 copies compatible with type II or III SMA, and 3 or 4 copies of the gene showing more severe disease than expected. CONCLUSIONS: Our proposed guideline would help to systematically identify discordant SMA cases that warrant further genetic investigation. The SMN2 gene, as the main modifier of SMA phenotype, deserves a more in-depth study to provide more accurate genotype-phenotype correlations.

9.
Front Immunol ; 11: 46, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117230

RESUMO

X-linked agammaglobulinemia (XLA) is a clinically and genetically well-defined immunodeficiency and the most common form of agammaglobulinemia. It is characterized by susceptibility to recurrent bacterial infections, profound hypogammaglobulinemia, and few or no circulating B cells. XLA is caused by mutations in the BTK gene, which encodes Bruton's tyrosine kinase (BTK). Because of its X-linked recessive inheritance pattern, XLA virtually only affects males, and the mother is the carrier of the mutation in 80-85% of the males with this condition. In the remaining 15-20% of the cases, the affected male is considered to have a de novo mutation. Here, we present the case of a child with a diagnosis of XLA caused by a missense mutation in the BTK gene (c.494G>A/p.C165Y). Apparently, his mother was wild type for this gene, which implied that the mutation was de novo, but careful analysis of Sanger electropherograms and the use of high-coverage massive parallel sequencing revealed low-level maternal gonosomal mosaicism. The mutation was detected in various samples from the mother (blood, urine, buccal swab, and vaginal swab) at a low frequency of 2-5%, and the status of the patient's mutation changed from de novo to inherited. This study underscores the importance of accurately establishing the parents' status on detection of an apparently de novo mutation in a patient, as inadvertent low-level mosaicism may lead to misinterpretation of the risk of recurrence, vital for genetic counseling.


Assuntos
Tirosina Quinase da Agamaglobulinemia/genética , Agamaglobulinemia/diagnóstico , Agamaglobulinemia/genética , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Doenças Genéticas Ligadas ao Cromossomo X/genética , Herança Materna , Mosaicismo , Mutação de Sentido Incorreto , Cromossomos Sexuais/genética , Análise Mutacional de DNA , Aconselhamento Genético , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Masculino , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...